

AQA Qualifications

A-LEVEL Chemistry

CHEM5 Energetics, Redox and Inorganic Chemistry Mark scheme

2420 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright $\ensuremath{\textcircled{O}}$ 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Marking guidance	Mark	Comments
1ai	<u>Covalent</u>	1	Ignore simple / molecular Do not allow macromolecular/giant covalent/dative/dipole- dipole/Hydrogen bonds Ignore VdW
1aii	P / phosphorus / P_4	1	
1aiii	P ₄ O ₁₀ + 6H ₂ O → 4H ₃ PO ₄	1	Mark independently of 1aii Accept multiples/fractions Ignore state symbols Allow ions on the RHS (\rightarrow 12H ⁺ + 4PO ₄ ³⁻) Allow correct equations from P ₄ O ₆ , P ₂ O ₃ and P ₂ O ₅ P ₄ O ₆ + 6H ₂ O \rightarrow 4H ₃ PO ₃ P ₂ O ₃ + 3H ₂ O \rightarrow 2H ₃ PO ₃ P ₂ O ₅ + 3H ₂ O \rightarrow 2H ₃ PO ₄
1bi	lonic	1	Ignore giant / lattice
1bii	Na / Sodium	1	
1biii	2Na + 2H ₂ O → 2Na ⁺ + 2OH ⁻ + H ₂	1	Allow equation to form 2NaOH Accept multiples/fractions Ignore state symbols

1biv	$Na_2O + 2HCI \rightarrow 2NaCI + H_2O$	1	Accept multiples/fractions Ignore state symbols Allow ions, but do not allow H ⁺ only for the acid.
1ci	lonic	1	Allow ionic and covalent / ionic with covalent character
1cii	Al ₂ O ₃	1	Ignore state symbols
1ciii	reacts with acids and bases	1	Allow reacts with acids and alkalis / acts as both an acid and a base / shows acidic and basic properties
1civ	$\begin{array}{l} Al_2O_3 + 6HCI 2Al^{3+} + 6CI^{-} + 3H_2O \\ Al_2O_3 + 6H^+ 2Al^{3+} + 3H_2O \\ \\ Al_2O_3 + 2NaOH + 3H_2O 2Na^+ + 2[Al(OH)_4]^- \\ \\ Al_2O_3 + 2OH^- + 3H_2O 2[Al(OH)_4]^- \\ \\ Al_2O_3 + 2NaOH + 7H_2O 2Na^+ + 2[Al(OH)_4 (H_2O)_2]^- \\ \\ \\ Al_2O_3 + 2OH^- + 7H_2O 2[Al(OH)_4 (H_2O)_2]^- \end{array}$	1	Allow equation to form $2AICI_3$ (but not AI_2CI_6)Allow equations with other acidsAllow equations to form $2Na[AI(OH)_4]$ or $2Na[AI(OH)_4(H_2O)_2]$ Allow equations with other alkalisAllow correct equations which form $[AI(OH)_6]^{3-}$ Allow equations to form $[AI(OH)_x(H_2O)_{6-x}]^{3-x}$ etc.Ignore state symbols

Question	Marking guidance	Mark	Comments
2ai	$2K^{+}(g) + 2e^{-} + \frac{1}{2}O_{2}(g)$ M3 $2K(g) + \frac{1}{2}O_{2}(g)$ M2 $2K(s) + \frac{1}{2}O_{2}(g)$ only M1	1 1 1	Mark each line independently, but follow one route only. Must have state symbols, but ignore s.s. on electrons. Penalise lack of state symbols each time.Alternative answers $2K(g) + O(g)$ $2K(g) + 1/2O_2(g)$ $2K(g) + 1/2O_2(g)$ $2K(s) + 1/2O_2(g)$ $2K(g) + O(g)$ $M1$ or $2K(g) + O(g)$ $2K(g) + O(g)$ $M2$ $2K(s) + O(g)$ $M2$ $2K(s) + 1/2O_2(g)$ $2K(s) + 1/2O_2(g)$ $M1$

2aii	(2 x 90) + 248 + (2 x 418) - 142 + 844 = - 362 + Lattice enthalpy of dissociation	3	M1 for (<u>2 x 90</u>) and (2 x 418)
	enthalpy of lattice dissociation = (+) 2328 (kJmol ⁻¹)		M2 for a correct expression (either in numbers or with words/formulae)
			M3 for answer
			2328 kJmol ⁻¹ scores 3 marks.
			Allow answers given to 3sf.
			Answer of 1820, scores zero marks as two errors in calculation.
			Answers of 2238, 1910, 2204 max = 1 mark only since one chemical error in calculation (incorrect/missing factor of 2)
			Allow 1 mark for answer of -2328 (kJmol ⁻¹)
			Penalise incorrect units by one mark.

2b	K⁺ (ion)/K ion is bigger (than Na⁺ ion)	1	K ⁺ has lower charge density / Na ⁺ has higher charge density. Ignore K atom is bigger
	(Electrostatic) attraction between (oppositely charged) <u>ions</u> is weaker	1	If attraction is between incorrect ions, then lose M2 Attraction between molecules/atoms or mention of intermolecular forces CE=0/2 Allow converse for Na ₂ O if explicit

Question	Marking guidance	Mark	Comments
3a	$MgCl_2(s) \rightarrow Mg^{2+}(aq) + 2Cl^{-}(aq)$	1	State symbols essential
			Do not allow this equation with H_2O on the LHS
			Ignore + aq on the LHS
			Allow H_2O written over the arrow / allow equation written as an equilibrium,
			Allow correct equations to form $[Mg(H_2O)_6]^{2+}$ ions.
3b	$\Delta H_{soln} MgCl_2 = LE + (\Delta H_{hyd}Mg^{2+}) + 2(\Delta H_{hyd}Cl^{-})$ $\Delta H_{soln} MgCl_2 = 2493 - 1920 + (2 x - 364)$	1	M1 for expression in words or with correct numbers
	= –155 (kJ mol ⁻¹)	1	Ignore units, but penalise incorrect units
3c	M1: Solubility decreases (as temp increases)	1	If M1 is incorrect then CE=0/3
	M2: the enthalpy of solution is exothermic / reaction is exothermic / backwards reaction is endothermic	1	If answer to 3b is a +ve value, allow: M1: Solubility increases (as temp increases)
	M3: (According to Le Chatelier) the equilibrium moves to absorb heat/reduce temperature/oppose the increase in temperature (in the endothermic direction)	1	M2: Enthalpy of solution is endothermic etc. M3: (According to Le Chatelier) the equilibrium moves to absorb heat/reduce the temperature/oppose the increase in temperature (in the endothermic direction)

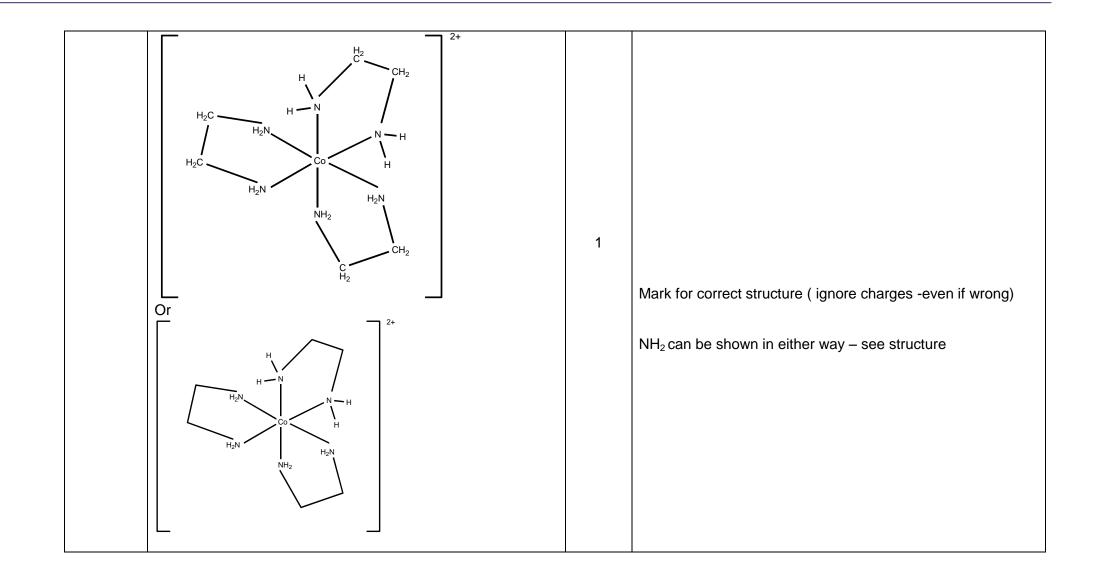
Question	Marking guidance	Mark	Comments
4ai	Zn ²⁺	1	Zn ²⁺ (aq) Apply List
4aii	298 K /25°C (solutions at) unit concentration / 1 mol dm ⁻³ (of Zn ²⁺)	1	Ignore pressure Ignore standard conditions Ignore state symbols Ignore references to S.H.E
4b	Identifying it is the Zn/Zn ²⁺ and Co ²⁺ /Co half cells Zn $ Zn^{2+} $ Co ²⁺ Co	1	correct order with phase boundaries and salt bridge correct, no Pt If this is correct it scores M1 and M2 <i>Allow double dashed line for salt bridge</i> <i>Extra phase boundaries loses M2</i> Ignore state symbols
	$Zn \rightarrow Zn^{2+} + 2e^{(-)}$	1	M3 independent Allow –2e ⁻ on LHS

4c	<u>Co³⁺</u>	1	Mark independently.
	$2\text{Co}^{3+}(aq) + \text{H}_2\text{O}(I) \rightarrow 2\text{Co}^{2+}(aq) + \frac{1}{2}\text{O}_2(g) + 2\text{H}^+(aq)$	1	Ignore state symbols allow multiples
	Oxygen /O ₂	1	Allow 1/2 O ₂
4d	$ \begin{array}{l} {\pmb{E}}^{{ \theta}}\left(O_{2}({ H}_{2}O)\right) \text{ electrode } < {\pmb{E}}^{{ \theta}}\left(Au^{+}(Au)\right) \\ \text{OR } {\pmb{E}}^{{ \theta}}\left(Au^{+}(Au)\right) > {\pmb{E}}^{{ \theta}}\left(O_{2}({ H}_{2}O)\right) \\ \text{OR the } {\pmb{E}}^{{ \theta}}\left(Au^{+} Au\right) \text{ electrode potential is more positive } \\ \text{than the } {\pmb{E}}^{{ \theta}}\left(O_{2} { H}_{2}O\right) \text{ electrode } \\ \text{OR The emf (for the reaction of Au and oxygen) is -0.45 V } \\ \text{(and therefore not spontaneous)} \end{array} $	1	Mark independently
	so <u>oxygen</u> is unable to oxidise gold	1	Ignore references to water Allow gold cannot reduce <u>oxygen</u>

Question	Marking guidance	Mark	Comments
5ai	M1 Positive electrode $O_2 + 2H_2O + 4e^{(-)} \rightarrow 4OH^-$ M2 Negative electrode $H_2 + 2OH^- \rightarrow 2H_2O + 2e^{(-)}$	1 1	Allow multiples, ignore state symbols If equations both correct but at the wrong electrodes allow 1 mark
	$2H_2 + O_2 \rightarrow 2H_2O$	1	Mark independently Must be this way round
5aii	Increase (emf)	1	If decrease/no change then CE=0/2; if blank then mark on
	$2H_2 + O_2 \rightarrow 2H_2O$ will move to the right or overall equation moves to the right	1	Allow $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$ will move to the right / oxygen half equation moves to the RHS / $E^{\Theta}O_2 OH^-$ half cell moves to the right
5b	e.m.f /V	1	Must start at y-axis
	time /min		
5ci	Unchanged	1	

5cii	Water is the <u>only</u> product / fuel cell does not give out pollutants such as NO_x or CO_2 or SO_2 or C or CO or C_xH_y or unburnt hydrocarbons	1	Not fuel cell does not give out pollutants unless pollutant stated
5d	CO2 is released because fossil fuels are burned to produce electricity to generate hydrogenORCO2 is released when methane reacts with steam to produce hydrogen	1	Allow CO ₂ is released to produce the hydrogen

Question	Marking guidance	Mark	Comments
6a	$\Delta H^{e} = \Sigma \Delta H_{f}^{e}$ products - $\Sigma \Delta H_{f}^{e}$ reactants	1	
	or (2 × -395) - (2 × -297)		
	$= -196 (kJ mol^{-1})$	1	Penalise incorrect units, ignore missing units
6b	$\Delta S^{e} = \Sigma S^{e}$ products - ΣS^{e} reactants	1	
	$= (2 \times 256) - 205 - (2 \times 248)$		
	$= -189 \frac{JK^{-1} \text{ mol}^{-1}}{1}$	1	Allow -0.189 kJ K ⁻¹ mol ⁻¹
			Units must be given and must match value
6c	causes an increase in order / a decrease in disorder	1	Allow products more ordered / products less disordered
			If answer to 6b is +ve, allow products are less ordered / causes an increase in disorder / causes a decrease in order


6d	$\Delta G^{\diamond} = \Delta H^{\diamond} - T \Delta S^{\diamond}$	1	Do not insist on standard state symbol
	= -196 - 323 (-189/1000)	1	If conversion of T or ΔS incorrect, then can only score M1
	$= -134.9 \text{ kJ mol}^{-1}$	1	Must have correct units. Allow answers in J mol ⁻¹ –135 kJ mol ⁻¹
			If both alternative values used then -169(.3) kJ mol ⁻¹ . Allow alternative Δ H and/or alternative Δ S in calculation
6e	Feasible because ΔG is negative	1	Allow mark if a correct deduction from answer to 6d
			Both a reference to feasibility and to ΔG needed
6fi	(The catalyst is in) a different state or phase (from the reactants)	1	
6fii	$SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$	1	allow $2VO_2$ instead of V_2O_4 allow multiples
	$\frac{1}{2}O_2 + V_2O_4 \rightarrow V_2O_5$	1	Must have equations in this order.
6fiii	Surface area is increased	1	
6fiv	So that the catalyst is not poisoned	1	Allow correct reference to the blocking active sites

Question	Marking guidance	Mark	Comments
7a	CrCl ₃ + 6H ₂ O → [Cr (H ₂ O) ₆] ³⁺ + 3Cl ⁻	1	Ignore state symbols
7b	M1 $\mathbf{P} = Cr(OH)_3(H_2O)_3$ M2 NaOH (not excess) or NH ₃ or names	3	Ignore state symbols Penalise charges on ligands in complex ion formulae Do not transfer M1 from equation
	M3 [Cr (H ₂ O) ₆] ³⁺ + 3OH ⁻ → [Cr(OH) ₃ (H ₂ O) ₃] + 3 H ₂ O [Cr (H ₂ O) ₆] ³⁺ + 3NH ₃ → [Cr(OH) ₃ (H ₂ O) ₃] + 3 NH ₄ ⁺		Allow KOH do not allow OH ⁻ /excess NaOH but mark on
			Equations must match reagent but if NH ₃ then also allow two equations $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ $[Cr (H_2O)_6]^{3+} + 3OH^- \rightarrow [Cr(OH)_3(H_2O)_3] + 3 H_2O$
			Do not allow $Cr(OH)_3$ as identity of P, or in equation

7c	M1 $\mathbf{Q} = CO_2$	3	Ignore state symbols
			Penalise charges on ligands in complex ion formulae
	M2 Na ₂ CO ₃ or NaHCO ₃ or K_2CO_3		
			Do not allow incorrect formulae or CO ₃ ²⁻ but mark on.
	M3		Do not allow insoluble carbonates or H_2CO_3 but mark on.
			Do not allow equations that give $Cr(OH)_3$
	$2[Cr (H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2[Cr(OH)_3(H_2O)_3] + 3CO_2 + 3H_2O$		
			allow
			$[Cr (H_2O)_6]^{3+} + 3HCO_3^{-} \rightarrow [Cr (OH)_3 (H_2O)_3] + 3CO_2 + 3H_2O$

7d	Either	3	Ignore state symbols Penalise charges on ligands in complex ion formulae
	M1 R = $[Cr(OH)_6]^{3-}$ M2 NaOH or KOH M3 $[Cr(OH)_3(H_2O)_3] + 3OH^- \rightarrow [Cr(OH)_6]^{3-} + 3H_2O$		Allow $\mathbf{R} = [Cr(OH)_4(H_2O)_2]^-$ or $[Cr(OH)_5(H_2O)]^{2-}$ do not allow OH ⁻ but mark on, ignore excess/conc allow equations to form $[Cr(OH)_4(H_2O)_2]^-$ and $[Cr(OH)_5(H_2O)]^{2-}$ Do not allow equations from $Cr(OH)_3$
	OR M1 R = $[Cr(H_2O)_6]^{3+}$ M2 HCl or any named acid M3 $[Cr(OH)_3(H_2O)_3] + 3H^+ \rightarrow [Cr(H_2O)_6]^{3+}$		OR Allow $\mathbf{R} = [Cr(H_2O)_5(OH)]^{2+}$ or $[Cr(H_2O)_4(OH)_2]^+$ Do not allow H ⁺ etc, but mark on. Allow equations to form $[Cr(H_2O)_5(OH)]^{2+}$ or $[Cr(H_2O)_4(OH)_2]^+$ or $[Cr(H_2O)_5Cl]^{2+}$ or $[Cr(H_2O)_4Cl_2)]^+$ but not $[Cr(H_2O)_3Cl_3]$ Do not allow equations from Cr(OH) ₃
7e	Zn/ HCl , Sn/ HCl, etc Blue	1	Allow H_2SO_4 instead of HCl Ignore H_2 Mark independently

Question	Marking guidance	Mark	Comments
8a	[Ar] $4s^2 3d^7$ or $1s^22s^22p^63s^23p^64s^23d^7$	1	Allow 4s and 3d in either order
	[Ar] $3d^7$ or $1s^22s^22p^63s^23p^63d^7$ Any 3	1	
	Variable oxidation state Act as catalysts Form complexes Form coloured ions/compounds	3	
8b	Two atoms that each donate a lone pair (of electrons) / coordinate bonds from two atoms	1	
	Formula of ethane-1,2- diamine: $NH_2CH_2CH_2NH_2$ [Co (H ₂ O) ₆] ²⁺ +3NH ₂ CH ₂ CH ₂ NH ₂ \rightarrow [Co(NH ₂ CH ₂ CH ₂ NH ₂) ₃] ²⁺ +6H ₂ O	1	M2 gained from equation or structure Equation must be balanced inc charges Allow en or $C_2H_8N_2$ in equation for ethane-1,2-diamine
	There is an increase in the number of particles / the reaction goes from 4 moles to 7 moles	1	Allow increase number of molecules/moles. Allow numbers that match an incorrect equation
	disorder/entropy increases / ΔS is positive	1	
	∆G negative	1	

Question	Marking guidance	Mark	Comments
9a	A reaction that produces its own catalyst/ one of the products is the catalyst	1	
	Mn ²⁺	1	Allow Mn ³⁺
9b	H_2SO_4	1	

9c	There is no/very little catalyst at the start OR the reaction only speeds up when the catalyst is produced	1	
	Two negative ions (MnO_4^- and $C_2O_4^{-2-}$) repel	1	Reference to molecules loses M2
	The <u>activation energy</u> for the reaction is high / heat is required to overcome the <u>activation energy</u>	1	

9d	M1 5 $C_2O_4^{2-}(aq) + 2 MnO_4^{-}(aq) + 16 H^+(aq) \rightarrow$	1	Ignore state symbols
	$10 \text{ CO}_2(\text{g}) + 2 \text{ Mn}^{2+}(\text{aq}) + 8 \text{ H}_2\text{O}(\text{I})$		
	M2 n(MnO ₄ ⁻) = <u>26.40 x 0.02</u> OR n(MnO ₄ ⁻) = 5.28 x 10 ⁻⁴	1	
	1000		
	5		M3 is for M2 x 5/2
	M3 n(C ₂ O ₄ ²⁻) = $\frac{5}{2}$ x 5.28 x 10 ⁻⁴ = 1.32 x 10 ⁻³	1	If wrong ratio used then can only score M2, M4, M5 and M6
	M4 n(C ₂ O ₄ ²⁻ in flask originally) = $1.32 \times 10^{-3} \times 10 = 1.32 \times 10^{-2}$	1	M4 is for M3 x 10
	M5 n(K ₃ [Fe(C ₂ O ₄) ₃].3H ₂ O) = $\frac{1.32 \times 10^{-2}}{3}$ = 4.40 x 10 ⁻³		
	3	1	M5 is for M4 ÷ 3
	$(Mr K_3[Fe(C_2O_4)_3].3H_2O = 491.1)$		
	(1011 + (311 + (320 + (313 + (310 + (200 + (31) + (310 + (310 + (310 + (31) + (31) + (31) + (31) + (31) + (31) + (31) + (31) + (31) +		
	M6 Mass of $K_3[Fe(C_2O_4)_3]$.3H ₂ O reacted = 4.40 x 10 ³ x 491.1	1	M6 is for M5 x 491(.1)
	= 2.16 g	I	
	M7 % purity = 2.16 x100 = 94.3 or 94.4 %	4	Answer must be to 2 of
	2.29	I	Answer must be to 3 s.f. Correct answer scores 6 marks; mark equation separately
			Alternative method using ratio by moles:
			M5 n(C ₂ O ₄ ²⁻) = 4.66 x 10 ⁻³ x 3 = 0.0140 moles in 250cm ³
			M6 n(complex) = $2.29/491.1 = 4.66 \times 10^{-3}$ moles in 250 cm ³
			M7 % = 0.0132/0.0140 x 100 = <u>94.3 or 94.4</u> %

9e	Make <u>some known</u> concentrations (of the coloured solution and read the absorbance of each one using a colorimeter)	1	Ignore addition of suitable ligand
	Plot a graph of absorbance vs concentration	1	Not just "plot a calibration curve" / reference to Beer-Lambert graph is insufficient
			Do not allow transmittance in M2
	Read/compare unknown concentration from calibration curve/graph (and hence the concentration from the graph)	1	M3 can only be scored if graph/curve mentioned